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ABSTRACT

We investigate the Schur multiplicators M(G) of p-groups G using coclass

theory. For p > 2 we show that there are at most finitely many p-groups

G of coclass r with |M(G)| ≤ s for every r and s. We observe that this

is not true for p = 2 by constructing infinite series of 2-groups G with

coclass r and |M(G)| = 1. We investigate the Schur multiplicators of the

2-groups of coclass r further.

1. Introduction

Schur multiplicators of groups have been introduced by Schur [11] to study

projective representations of groups. Since then, they have proved to be a

powerful tool in group theory. For example, they play a role in Galois theory

and they are relevant in the theory of central group extensions. We refer to

[10] and [5] for an introduction to Schur multiplicators and for references on the

topic.

The p-part of the Schur multiplicator of a finite group embeds into the Schur

multiplicator of its Sylow p-subgroup. Hence the study of the Schur multiplica-

tors of finite p-groups is of central interest in this area. The search for p-groups

with trivial Schur multiplicator is of particular interest. See also Question 17

of [8].
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In this paper we investigate the Schur multiplicators of finite p-groups using

the coclass as primary invariant: The coclass of a group G of order pn and

class c is cc(G) = n − c. The first main result of this paper is the following.

(See Section 3 for a proof.)

Theorem A: Let p > 2 prime and r ∈ N. For every s ∈ N there are only

finitely many p-groups G of coclass r with |M(G)| ≤ s.

Corollary: Let p > 2 prime and r ∈ N. Then there are only finitely many

p-groups of coclass r with trivial Schur multiplicator.

It is easy to show that Theorem A and its Corollary are not valid for 2-groups.

As an example, the groups

〈g, t, c | g2r

= c, t2
n

= c, c2 = 1, tg = t−1, cg = ct = c〉

have order 2r+n+1, coclass r and trivial Schur multiplicator. Hence, for every

possible coclass r there are infinitely many 2-groups of coclass r with trivial

Schur multiplicator.

Coclass theory provides a powerful tool to study the Schur multiplicators of

the finite p-groups of coclass r further. For this purpose we use the graph,

G(p, r); its vertices correspond to the isomorphism types of the finite p-groups

of coclass r and there is an edge between G and H if G ∼= H/N where N is the

last non-trivial term of the lower central series of H . Every infinite pro-p-group

S of coclass r defines a maximal coclass tree T (S) in G(p, r): this is the infinite

subtree of G(p, r) consisting of all descendants of S/γi(S), where γi(S) is the ith

term of the lower central series of S and i is minimal such that cc(S/γi(S)) = r

and S/γi(S) is not isomorphic to a quotient of an infinite pro-p-group R 6∼= S

with cc(R) = r. By Theorem D of the coclass theorems, see [6], there are only

finitely many isomorphism types of infinite pro-p-groups of coclass r. Thus

G(p, r) consists of finitely many maximal coclass trees and finitely many other

groups. A second result of this paper is the following. (See Section 4 for a

proof.)

Theorem B: Let S be an infinite pro-2-group of coclass r and let T = T (S).

(a) If |M(S)| = ∞, then for every s there are only finitely many G ∈ T

with |M(G)| ≤ s.

(b) If |M(S)| < ∞, then there is an s = s(S) ∈ N with |M(G)| ≤ s for all

groups G ∈ T .
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(c) If |M(S)| 6= 1, then there are only finitely many groups G ∈ T with

|M(G)| = 1.

It follows from [7] that the ranks of the Schur multiplicators of the p-groups

of coclass r are bounded above by a function in p and r. In the course of our

proof for Theorem B, we exhibit upper and lower bounds for the ranks and

the exponents of the Schur multiplicators of the p-groups in a tree T (S). (See

Section 4.)

Theorem B implies that almost all of the infinitely many 2-groups of coclass

r with trivial Schur multiplicator are contained in trees T (S) for infinite pro-

2-groups S with coclass r and |M(S)| = 1. In [2] it has been observed that

such groups, S, exist for every r. In Section 5 we demonstrate how Theorem

B can be used to determine infinite sequences of 2-groups with trivial Schur

multiplicator.

We consider the results of [1] and [3] to investigate the situation further:

these assert that the 2-groups of coclass r in a tree T (S) fall into finitely many

‘periodicity classes’ and finitely many ‘sporadic groups’ (see also Section 2 for

background). Such periodicity classes also exist for p-groups with p > 2, but

they may not contain almost all p-groups of coclass r in a tree T (S) in this

case.

Using the computer algebra system Gap [12], we determined the Schur mul-

tiplicators of a large collection of 2-groups of coclass at most 3 and of 3-groups

of coclass at most 2. These experiments suggest that the periodicity classes of

p-groups have a major influence on the structure of the Schur multiplicators of

the p-groups of coclass r. The following conjecture describes the results of our

experiments.

Conjecture: Let (G0, G1, . . .) be a periodicity class of p-groups. There exist

f, t ∈ N0 and lj , mj ∈ N0 for 1 ≤ j ≤ t such that for every i ≥ f it follows that

M(Gi) ∼= Cpm1+il1 × · · · × Cpmt+ilt .

If this conjecture is true, then the infinitely many 2-groups of coclass r with

trivial Schur multiplicator fall into finitely many periodicity classes and finitely

many other groups. Theorem B asserts that a periodicity class of 2-groups with

trivial Schur multiplicator can only arise in a tree T (S) where S has trivial

Schur multiplicator.
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2. Notation and preliminaries

In this section we summarise some background on coclass theory of finite p-

groups since we need it later. We refer to [6] for details and information on the

state of the art of coclass theory.

In general, we denote with G = γ1(G) > γ2(G) > · · · the lower central series

of a group G and we write Gi = G/γi(G) for its quotients. The coclass of an

infinite pro-p-group S is then defined as cc(S) = limi→∞ cc(Si).

2.1. Infinite pro-p-groups of finite coclass and their trees. An

infinite pro-p-group S of coclass r has the structure of a uniserial p-adic

pre-space group; that is, there exist l and d such that γi(S) ∼= Z
d
p and

[γi(S) : γi+1(S)] = p, for every i ≥ l. The integer d is called the dimension

of S.

Its maximal coclass tree T (S) contains exactly one maximal infinite path

Si, Si+1, . . . starting at the root Si of the tree T (S). This maximal infinite path

is called the main line of T (S).

For every j ≥ i we define the subtree Bj(S) of T (S) as the subgraph contain-

ing all descendants of Sj which are not descendants of Sj+1. By construction,

every Bj(S) is a finite subtree of T (S) and it is called a branch.

The subtree T (S, k) contains all groups with distanced ≤ k from the main

line and is called a shaved tree. Its branches are denoted with Bj(S, k).

2.2. Periodicity classes. Let S be an infinite pro-p-group of finite coclass

and dimension d. It has been conjectured in [9] (Conjecture P) and proved in [1]

and [3] that for every k ∈ N there exists an f = f(k, S), such that the branches

Bj(S, k) with j ≥ f of the shaved tree T (S, k) satisfy a periodic pattern; that

is, there exists a graph isomorphism π with

π : Bj(S, k) → Bj+d(S, k) for every j ≥ f.

In [3] there is an explicit group theoretic construction outlined which underpins

the isomorphism π and allows one to construct the image of a group G under π.

For G ∈ Bj(S, k) we denote with (G, π(G), π2(G), . . .) its periodicity class.

1 Theorem (See [3]): Let S be an infinite pro-p-group of finite coclass and

dimension d and let (G, π(G), . . .) be a periodicity class in T (S). Suppose that

G ∈ Bj(S) has distance e to the main line. Then every πi(G) has distance e to

the main line and is an extension of γj+id(G) ∼= γj+id(S)/γj+id+e(S) by Sj+id.
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If p = 2, then there exists an integer k = k(S) such that T (S) = T (S, k), see

[6], Theorem 11.3.7. It follows that every tree T (S) and thus also all of G(2, r)

consists of finitely many periodicity classes and finitely many ‘sporadic groups’;

that is, groups not contained in a periodicity class.

3. Uniserial extensions

An extension G of N by Q is called uniserial if N ≤ G′ and the series defined

by N0 := N and Ni+1 = [Ni, G] satisfies [Ni : Ni+1] = p for some prime p.

In this section we investigate first the Schur multiplicators of uniserial exten-

sions. Then we apply these results to the groups in a maximal coclass T (S)

using that every group G in a branch Bj(S) of T (S) is a uniserial extension of

γj(G) by the main-line group Sj .

Theorem A and its corollary as well as Theorem B (a) and (c) follow as

application of the results of this section.

3.1. Maps induced by projection. Let G be an extension of N by Q. The

5-term homology sequence, see [10], 11.4.17, induces the exact sequence

M(G)
βG,Q

−→ M(Q)
γG,Q

−→ N/[N, G]
δG,Q

−→ G/G′.

To give an explicit description for the maps in this sequence, let F/R be

a presentation for G and let F/U be a presentation for Q such that R ≤ U .

By Hopf’s formula we can identify M(G) = (R ∩ F ′)/[R, F ] and M(Q) =

(U ∩ F ′)/[U, F ]. Further, it follows that N ∼= U/R and G/G′ ∼= F/RF ′. We

denote with Ui/R the preimage of Ni in U/R for i ∈ N0. The maps in the above

exact sequence are then defined by

βG,Q : (R ∩ F ′)/[R, F ] → (U ∩ F ′)/[U, F ] : r[R, F ] 7→ r[U, F ];

γG,Q : (U ∩ F ′)/[U, F ] → U/U1 : u[U, F ] 7→ uU1;

δG,Q : U/U1 → G/G′ : uU1 7→ uRF ′.

We consider the exact sequence for uniserial extensions using this notation.

2 Lemma: Let G be a non-trivial uniserial extension of N by Q. Then

a) δG,Q = 0 and γG,Q is surjective with Im(γG,Q) ∼= Cp.

b) Im(βG,Q) = Ker(γG,Q) = (U1 ∩ F )/[U, F ].

In particular, we obtain the exact sequence M(G) → M(Q) → Cp → {1}.
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Proof. (a) As the extension is uniserial, it follows that N ≤ G′ and hence

U ≤ RF ′. Thus δG,Q = 0 and γG,Q is surjective. As U/U1
∼=N/N1

∼=Cp,

the result follows.

(b) Ker(γG,Q) = (U ∩ F ′ ∩ U1)/[U, F ] = (U1 ∩ F ′)/[U, F ].

In the special case that G is a central extension of N ∼= Cp by Q, we can also

describe the kernel of βG,Q to some extent.

3 Lemma: Let G be a uniserial extension of N ∼= Cp by Q. Then Ker(βG,Q) is

elementary abelian of rank at most rk(G/G′).

Proof. By [4], the 5-term homology sequence can be completed to the exact

sequence N ⊗ (G/G′) → M(G) → M(Q) → Cp → {1} in the case of a cen-

tral extension. The left most map in this extended sequence is induced by

U/R × F/RF ′ → (R ∩ F ′)/[R, F ] : (xR, yRF ′) 7→ [x, y][R, F ]. As N ⊗ (G/G′)

is elementary abelian of rank at most rk(G/G′), the result follows.

3.2. Applications to maximal coclass trees. Let S be an infinite pro-p-

group of coclass r. Then S is a uniserial extension of γj(S) by Sj for every large

enough j. We define

Ij = Im(βS,Sj
) and Kj = Ker(βS,Sj

).

4 Theorem: Let G be a group in a branch Bj(S) of the maximal coclass tree

T (S). Then |Ij | divides |M(G)|.

Proof. The group G is an extension of γj(G) by Sj . Lemma 2 yields that Ij and

Im(βG,Sj
) are both subgroups of index p in the finite abelian p-group M(Sj).

Thus |Ij | = |Im(βG,Sj
)| divides |M(G)|.

We investigate M(Sj) and Ij further. For this purpose we consider presenta-

tions F/Rj = Sj and F/R = S such that R ≤ · · · ≤ Rj+1 ≤ Rj ≤ · · · . Then

we obtain the following explicit descriptions of Ij and Kj .

5 Lemma: Ij = (Rj+1 ∩ F ′)/[Rj , F ] and Kj = (R ∩ [Rj , F ])/[R, F ] for every

j ∈ N.

Proof. By construction: Ij = ([Rj , F ]R∩F ′)/[Rj , F ] = (Rj+1∩F ′)/[Rj, F ] and

Kj = (R ∩ F ′ ∩ [Rj , F ])/[R, F ] = (R ∩ [Rj , F ])/[R, F ].

6 Lemma:
⋂

j∈N
Kj = {1}.
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Proof.
⋂

j∈N
(R ∩ [Rj , F ]) = R ∩ [(∩j∈NRj), F ] = R ∩ [R, F ] = [R, F ].

The next theorem provides the main basis for our proofs of Theorem A with

its corollary and of Theorem B (a) and (c).

7 Theorem:

(a) If M(S) is finite, then there exists an i ∈ N such that Ij = M(S) for all

j ≥ i.

(b) If M(S) is infinite, then the orders of Ij are unbounded.

Proof. (a) By Lemma 6 there exists an i ∈ N such that Kj = Ki = {1} for

all j ≥ i. This yields that Ij
∼= M(S)/Kj = M(S) for all j ≥ i.

(b) We note that Ij is finite with Ij
∼= M(S)/Kj. Thus Lemma 6 yields

that the orders of Ij are unbounded.

Theorems 7 and 4 have the following immediate corollaries.

8 Corollary:

(a) If M(S) is non-trivial, then there exists an l such that |M(G)| 6= 1 for

every group G in a branch Bj(S) with j ≥ l.

(b) If M(S) is infinite, then for every s ∈ N there exists an l = l(s) such

that |M(G)| ≥ s for every G in a branch Bj(S) with j ≥ l.

Corollary 8 implies Theorem B (a) and (c) directly, as branches are finite

subtrees of T (S). Further, the results of [2] assert that M(S) is infinite if

p > 2. As G(p, r) contains only finitely many maximal coclass trees and finitely

many groups outside, Theorem A and its corollary also follow from Corollary 8.

4. Bounds for rank and exponent

In this section we investigate the Schur multiplicators of the groups in a maximal

coclass tree T (S) further, and we introduce bounds on rank and exponent for

them. Theorem B (b) will follow as application of the results of this section.

As a first step, we describe the Schur multiplicators of the main line groups

in T (S) more precisely. We continue to use the notation of Section 3.

9 Theorem: M(Si) = Ii × Cp for every large enough i.

Proof. By Lemma 2, it follows that [M(Si) : Ii] = p, provided that i is large

enough so that S is a uniserial extension of γi(S) by Si. Note that βS,Si−1
=
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βS,Si
βSi,Si−1

. Thus K = Ker(βSi,Si−1
) supplements Ii in M(Si). Lemma 3

yields that K is elementary abelian. Hence it contains a subgroup of order p

complementing Ii in M(Si).

Theorem 9 implies that M(Si) is cyclic of order p for every i if M(S) is

trivial. Further, it induces the following bounds on rank and exponent of the

Schur multiplicators of the main-line groups. Recall that the Schur multiplicator

of an infinite pro-p-groups of finite coclass has finite rank.

10 Theorem: Let S be an infinite pro-p-group of coclass r with |M(S)| > 1.

Then for every large enough i ∈ N it follows that

a) rk(M(Si)) = rk(M(S)) + 1.

b) If M(S) is finite, then exp(M(Si)) = exp(M(S)).

c) If M(S) is infinite, then exp(M(Si)) is unbounded with exp(M(Si)) ≤

p
1
2
(i+r).

Proof. a), b) and the first part of c) follow directly from Theorem 9 and 7. It

remains to prove the upper bound on exp(M(Si)) if M(S) is infinite. A theorem

of Schur [11] asserts that exp(M(G))2 | |G| for a finite group G. This yields the

desired upper bound, as |Si| = pi+r.

These bounds on rank and exponent of the Schur multiplicators of the main-

line groups induce similar bounds on the ranks and exponents of the Schur

multiplicators of the groups in T (S, k) for fixed k.

11 Theorem: Let S be an infinite pro-p-group of coclass r and denote f =

rk(S/S′) and b = rk(M(S)). Let G be a group in Bj(S, k) for some arbitrary

k ∈ N and some large enough j ∈ N. Denote cj = exp(M(Sj)). Then

b ≤ rk(M(G)) ≤ b + kf + 1 and cj/p ≤ exp(M(G)) ≤ pkcj .

Proof. Let J = Im(βG,Sj
). By Lemma 2, J is a subgroup of index p in M(Sj).

We first consider the rank of M(G) and find that rk(M(S)) + 1 = rk(M(Sj) ≥

rk(J) ≥ rk(M(Sj)) − 1 = rk(M(S)) by Theorem 10. As G has distance at

most k from the main line, it is an at most k-fold iterated central extension

of Cp and Sj . By Lemma 3, the kernel of each of the involved projection

maps is elementary abelian of rank at most f . Thus |M(G)| ≤ |J |pkf . Hence

rk(M(G)) ≤ rk(J) + kf ≤ rk(M(S)) + 1 + kf . A similar argument yields the

inequality for the exponent.
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For p = 2 there exists a k = k(r) such that Bj(S, k) = Bj(S) for every j and

S. Thus Theorem B (b) follows directly from Theorems 10 and 11. Further, we

obtain another proof that the ranks of the Schur multiplicators of the 2-groups

of coclass r are bounded by a function in r; a result that also follows from [7].

5. Examples of 2-groups with trivial Schur multiplicator

Theorem B provides a recipe for finding infinite series of 2-groups with given

coclass r and trivial Schur multiplicator: first we determine the infinite pro-2-

groups S of coclass r with trivial Schur multiplicator and then we investigate

the groups in T (S). If the Conjecture of Section 1 is true, then almost all of

the groups in T (S) with trivial Schur multiplicator fall into periodicity classes.

Our experimental evidence supports this and in this section we report on some

of our experiments.

The infinite pro-2-groups of coclass r ∈ {1, 2, 3} have been determined in

[9]: There is 1 group of coclass 1, there are 5 groups of coclass 2 and there

are 54 groups of coclass 3. Among these there are 5 groups with trivial Schur

multiplicator as shown in [2]. We recall these groups here for completeness.

S1 = 〈a, t | a2 = 1, ta = t−1〉 (cc1)

S2 = 〈a, t | a4 = 1, ta = t−1〉 (cc2)

S3 = 〈a, t | a8 = 1, ta = t−1〉 (cc3)

S4 = 〈a, t, b | a2 = b2, b4 = 1, ta = t−1b, ba = b−1, bt = b−1〉 (cc3)

S5 = 〈a, b, c, t1, t2, d | a2 = d, b2 = t2, c
2 = t1, d

2 = 1, ba = c, ca = b, (cc3)

cb = ct−1
1 t2d, ta1 = t2, t

a
2 = t1, t

b
1 = t−1

1 , tc2 = t−1
2 〉

The tree T (S1) is the (unique) maximal coclass tree of G(2, 1). This tree is

well-understood. It contains two infinite series of 2-groups with trivial Schur

multiplicator: the quaternion groups and the semi-dihedral groups. Both of

these series form a periodicity class in G(2, 1). The third periodicity class in

G(2, 1) contains only dihedral groups and the Schur multiplicators of the groups

in this class are all cyclic of order 2.

We determined large (but finite) parts of T (S) for various pro-2-groups S

of coclass at most 3 including the groups S1, . . . , S5 and we computed the

Schur multiplicators of the groups obtained in T (S). These experiments pro-

vide strong support for the Conjecture of Section 1. In particular, they support
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the conjecture that the Schur multiplicators of the groups in a single periodicity

class of T (Si) are all isomorphic if M(Si) is finite. The following tables exhibits

the number of periodicity classes and the conjectured number of classes with

trivial Schur multiplicator for 1 ≤ i ≤ 5:

S1 S2 S3 S4 S5

total number of periodicity classes 3 4 6 5 18

number of classes with trivial multiplicator 2 2 3 3 10
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